Tag: GI

Fiber Probes to Investigate Brain-Gut Relationship

Engineers at MIT have developed a microelectronic probe that can measure and influence the behavior of neurons involved in the brain-gut axis. Neural communication between the brain and GI tract has been implicated in a range of conditions as varied as autism and Parkinson’s disease. However, studying the interplay between these neurons was d (Read more...)

Surgical Patch Alerts to Intestinal Leaks

Scientists at the Swiss Federal Laboratories for Materials Science and Technology (EMPA) have developed an advanced surgical sealant that can alert clinicians to the presence of an intestinal leak after gastrointestinal surgery. Such leaks can be very dangerous, but until now clinicians had few ways to detect them before they start causing symptoms (Read more...)

Ingestible Sensor Reveals Gastric Motility

Researchers at MIT have developed an ingestible sensor that can reveal gastrointestinal motility issues, such as gastroparesis and gastroesophageal reflux disease. The technology is intended for use as an easy at-home method to diagnose such issues, which typically require more invasive and inconvenient procedures, such as endoscopy or X-ray imagin (Read more...)

Hydrogel Cell Carrier for Fistula Healing

Researchers at Johns Hopkins created an injectable hydrogel carrier vehicle for stem cells that is intended to aid in healing a difficult complication of Crohn’s disease, perianal fistulas. Perianal fistulas are very challenging to treat, but stem cells have shown promise in assisting with this process. However, it is difficult to get the cel (Read more...)

Microbial Fuel Cell Powers Ingestible Devices

Researchers at Binghamton University have developed a microbial fuel cell that can power ingestible devices, such as cameras, that can detect health issues in the gastrointestinal tract, and specifically within the small intestine. The fuel cell contains dormant Bacillus subtilis endospores that only germinate and become active when they encounter (Read more...)

Soft Robot Grows Like a Plant to Travel Through Tight Spaces

At the University of Minnesota, researchers have developed a soft robotic system that can ‘grow’ like a plant. The mechanism allows it to travel through difficult-to-access areas, such as the tortuous gastrointestinal tract or vasculature. The system works by extruding a liquid through an opening in the device, and at the same time a ph (Read more...)

Carbon Monoxide-Loaded Foam as Inflammatory Disease Treatment

Researchers at MIT have created a carbon monoxide-loaded foam intended for therapeutic use against inflammatory disease. While the gas is toxic if inhaled in large quantities, in small doses it has potent anti-inflammatory effects. However, delivering it to the gastrointestinal tract to treat inflammatory diseases, such as colitis, is a challenge. (Read more...)

Microfluidic Chip Models Inflammatory Intestinal Disease

Researchers at Harvard’s Wyss Institute have modeled Environmental Enteric Dysfunction (EED), a childhood inflammatory intestinal disease, on a microfluidic chip and gained new insights into the genetic changes underlying the condition. This is the first in vitro model of the disease, and highlights the power of organ on a chip systems to pro (Read more...)

Laparoscopic Robot Performs First Autonomous Surgery

Researchers at Johns Hopkins University developed and now successfully tested the Smart Tissue Autonomous Robot (STAR), a self-guiding surgical robot that can perform challenging laparoscopic procedures in gastrointestinal surgery, including intestinal anastomosis. The robot can adjust its surgical plan in real time, just as a human surgeon would, (Read more...)

Catheter-Deliverable Biomaterial Sealants: Interview with Natalie Artzi, Co-founder of BioDevek

BioDevek, a medtech company based in Cambridge, Massachusetts, has developed a biomaterial adhesive that acts to seal internal wounds and incisions. The material is designed to be sprayed through a catheter, and the primary application for the technology so far is to act as a sealant following colonic polyp resection. At present, following polyp re (Read more...)

Chip for Investigation of Coronavirus Intestinal Infection

At Harvard’s Wyss Institute researchers used an intestine-on-a-chip to study the way a coronavirus infects the intestines, and the influence of various drugs and immune cells on this process. The intestine chip revealed that remdesivir, a drug that received FDA emergency use authorization for COVID-19 treatment, actually damaged the intestina (Read more...)

Optical Fiber Imaging for Next-Generation Endoscopes

Researchers at the University of Exeter in England have developed a technique to image tissues through an ultrathin optical fiber, potentially allowing for high-resolution imaging of single cells within the body. The optical fibers are as thin as a human hair, and could lead to tiny endoscopes that can be inserted into human tissues to […]

Kirigami Stent for Localized Drug Delivery

Researchers at MIT have developed a kirigami-style stent that can provide localized drug delivery through needle-like projections that pop out when the stent is extended. The ‘spines’ on the stent’s surface deliver drug-loaded microparticles into the surrounding tissue, allowing for sustained drug release for an extended period. T (Read more...)

GI Genius Polyp Detection System: Interview with Giovanni Di Napoli, President, Gastrointestinal at Medtronic

We recently reported on the de novo FDA clearance received by Medtronic for its GI Genius AI polyp detection system. The product is hugely flexible as it works with any video colonoscope and provides AI powered assistance for clinicians in identifying colorectal polyps during colonoscopies. Medtronic reports that the system has significantly improv (Read more...)

3D Printed Shields Protect Guts During Radiotherapy

Researchers at Brigham and Women’s Hospital and MIT have developed 3D printed shields to protect the gastrointestinal tract from the side effects of radiotherapy. Using CT scans, the devices can be custom printed to suit each patient’s anatomy. The materials they’re made of contain high atomic number elements that help to shield t (Read more...)