Tag: Neurosurgery

Shear-Thinning Biomaterial for Embolic Applications: Interview with Upma Sharma, President and CEO of Arsenal Medical

Arsenal Medical, a medtech company based in Massachusetts, has developed Neocast, an embolic biomaterial designed for catheter-mediated embolization procedures. Conventional materials for embolization can have several limitations, including a lack of radiopacity, catheter clogging, catheter entrapment at the delivery site, solvent-mediated pain at (Read more...)

Refillable Device for Drug Delivery Past the Blood-Brain Barrier: Interview with Mike Maglin, CEO at CraniUS

CraniUS, a medtech company based in Baltimore, has developed the NeuroPASS drug delivery system. The technology is designed to deliver drugs to the brain, and it can bypass the blood-brain barrier. This layer of specialized endothelium significantly restricts which drug molecules can enter the brain, normally greatly limiting treatment options for (Read more...)

Refillable Device for Drug Delivery Past the Blood-Brain Barrier: Interview with Mike Maglin, CEO at CraniUS

CraniUS, a medtech company based in Baltimore, has developed the NeuroPASS drug delivery system. The technology is designed to deliver drugs to the brain, and it can bypass the blood-brain barrier. This layer of specialized endothelium significantly restricts which drug molecules can enter the brain, normally greatly limiting treatment options for (Read more...)

Brain Computer Interface Decodes Speech and Facial Expressions

Researchers at the University of California San Francisco have developed a brain computer interface that can lets someone with severe paralysis communicate with both speech and facial expressions, in the form of a digital avatar. The breakthrough advances what has been possible, with previous brain computer interface systems providing speech only, (Read more...)

Conductive Polymer Electrode is Metal-Free

Researchers at MIT have developed a metal-free electrode using conductive polymers. The electrode is flexible and strong enough for long-term implantation in the body. The device is intended as an advanced replacement for rigid metal electrodes that can cause tissue damage and scarring over the long term, leading to device failure. The new technolo (Read more...)

Biodegradable Ultrasound Implant Helps Chemo Reach Brain

Researchers at the University of Connecticut have developed an ultrasound implant that can assist in opening the blood brain barrier to allow chemotherapy to enter and treat brain cancer. However, unlike cumbersome ultrasound systems, this technology can be implanted directly into the brain, and does not require a follow-up surgery to remove the de (Read more...)

Scientists Grow Electrodes Inside The Body

Researchers at Linköping University in Sweden have developed a method whereby the body can ‘grow its own’ electrodes. The minimally invasive technique involves injecting a hydrogel that is laden with enzymes into target tissues. The enzymes interact with molecules that are present in the tissue to change the structure of the gel an (Read more...)

Neural Chip Detects, Suppresses Neurological Symptoms

Researchers at Ecole Polytechnique Fédérale de Lausanne in Switzerland have designed an advanced neural chip that can detect and suppress symptoms from a variety of neurological disorders, including Parkinson’s and epilepsy. The closed-loop neuromodulation system, which the researchers have called NeuralTree, includes soft impla (Read more...)

Pop-Up Electrode for Improved Neural Interfaces

Researchers at Penn State designed a pop-up electrode for brain monitoring and other applications requiring neural interfacing. The pop-up design starts life as a folded two-dimensional structure with a rigid outer coating that makes it easy to insert into the brain. Once in place, the hard coating dissolves, revealing a softer and more flexible ma (Read more...)

Ultrasound Tornado Rapidly Disrupts Blood Clots

A team of researchers at North Carolina State University have developed an ultrasound transducer that can disrupt blood clots in the brain quickly by creating an ultrasound vortex or ‘tornado’. The transducer is designed to be housed in a catheter that can be advanced through the vasculature until it reaches the site of a blood [&hellip (Read more...)

Artificial Neuron Uses Ions Like the Real Thing

Researchers at Linköping University in Sweden have developed artificial neurons that demonstrate 15 of the 20 characteristics of biological neural cells and can communicate with natural neurons in the body. The researchers call their device the “conductance-based organic electrochemical neuron,” or c-OECN, and it is based on materi (Read more...)

Hydrogel Scaffold Makes a Living Electrode

A team of researchers at the Harvard Wyss Institute have developed a soft, hydrogel scaffold that can function as a living electrode for brain-computer interface applications. The researchers used electrically conductive materials and created a porous and flexible scaffold using a freeze-drying process. They then seeded the scaffold with human neur (Read more...)

Symani Microsurgical Robotic System: Interview with Mark Toland, CEO of Medical Microinstruments

Medical Microinstruments, a medtech company with offices in Pisa, Italy and Delaware, USA, has developed the Symani Microsurgical Robot. The robotic system is designed to assist with microsurgical procedures, and it boasts a variety of advanced features to achieve this goal. These include a suite of the world’s smallest wristed surgical instr (Read more...)

Flexible Catheter for Brain Access Bioinspired by Wasps

Researchers at Imperial College London in the UK have developed a flexible catheter system that is designed to enable access and treatment of the deep areas of the brain. At present, catheters intended for such applications can suffer from rigidity, making it difficult to access the brain safely and effectively. This latest technology includes a [& (Read more...)

Nanoprinted Microelectrode Array for Brain Computer Interfaces

Researchers at Carnegie Mellon University have used a nanoscale 3D printing technique that allows them to customize the microelectrode arrays used for brain computer interfaces. The approach is called Aerosol Jet 3D printing, and the researchers used it to create three-dimensional microelectrode arrays that can be customized for particular patient (Read more...)